University of Illinois at Chicago Department of Mechanical & Industrial Engineering ME 594 – Computational Compressible Flow

Project #1: Exact Solution of the Riemann Problem for Euler Equations in 1D

Due on November 2, 2015

This project deals with the exact solution of the Riemann Problem for 1D Euler equations, as discussed in Chapter 4 of Toro's book. Start from the source code E1RPEX.F in the library *NUMERICA* that is available online.

- 1. Run the code for Tests 1 through 5 in Chapter 4 and show that you obtain the same results as those in the book.
- 2. Modify subroutine GUESSP to enforce the choice of the Initial Guess Values p_0 for solving the p_* equation based on each of the values p_{TR} , p_{pv} , p_{TS} as described in Chapter 4. Run Tests 1 through 5 using these different methods for Initial Guess Value and compare the number of iterations needed for convergence in different cases.
- 3. For each one of Tests 1 through 5, change one initial condition, run the case and compare it to the original case. As an example, see Figure 1 that shows the results for Test 2 for $\rho_L = 0.2$ compared to the case with $\rho_L = 1.0$ shown in Chapter 4 of Toro's book. Carefully discuss the results.
- 4. Write a complete Technical Report for the project.

Figure 1: Test 2 from Toro's book, Chapter 4: Exact solution for density, velocity, pressure and specific internal energy for $\rho_L = 1.0$ at t = 0.15 units and for $\rho_L = 0.2$ at t = 0.1 units.