University of Illinois at Chicago Department of Mechanical & Industrial Engineering ME 594 – Computational Compressible Flow

Project #2: Godunov Method for 1D Inviscid Burgers Equation

Due on November 23, 2015

This project deals with the solution of the 1D inviscid Burgers equation using the Godunov method described in Chapter 5 of Toro's book. Start from the source code BUGOD.F in the library *NUMERICA* that is available online.

- 1. Run the code for Test 3 in Chapter 5 and show that you obtain the same result as that in the book.
- 2. Modify subroutine BCONDI to implement Dirichlet type boundary conditions. Repeat Test 3 above using Dirichlet boundary conditions U(0) = -0.5 and U(CELLS + 1) = 0. Discuss the differences between the results of this part with those in part 1 above.
- 3. Obtain numerical results for the 1D Burgers equation with the following initial condition:

$$u(x, 0) = \sin(2\pi x)$$
, $0 \le x \le 1$ (1)

with periodic boundary conditions. Compare the results with the exact solution

$$u(x, t) = \sin\{2\pi[x - u(x, t)t]\}$$
(2)

for different times until a shock is formed.

NOTE: Equation (2) is implicit in u(x, t) and must be solved iteratively. The Newton-Raphson method is recommended with initial guess taken from Eq. (1). Special treatment is needed for x = 0, 0.5, 1.

- 4. Discuss the effect of time step size (Δt) on the stability, and the effect of cell size (Δx) on the numerical diffusion for the problem in part 3 above.
- 5. Write a complete Technical Report for the project.